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1. Introduction

Although the beginner representation theorist often first learns about the representation
theory of finite groups, the representation theory of Lie groups is a deep and beautiful subject. A
prototypical example in this theory is that of the polynomial representations of GLn(C). In this
report, we will detail a construction of the polynomial representations of GLn(C) that originated
in Deryuts’s 1891 treatise Essai d’une théorie générale des formes algébriques [2]. Like the
representation theory of the symmetric group, the construction of these modules is intimately
connected with the combinatorics of Young tableaux. After seeing examples of these modules,
we will investigate their structure further via the weight space decomposition. We conclude by
computing the characters of these representations.

2. Polynomial representations

Throughout, let GLn denote GLn(C). Recall that a GLn-module is an action of GLn on a
complex vector space V . After fixing a basis for V , a GLn-module is equivalent to a group
homomorphism

ρ : GLn → GLN ,

where N is the dimension of V .
A fundamental question in the representation theory of a group G is: what are all repre-

sentations of G? This question has been answered decisively for the symmetric group; all
representations are a direct sum of irreducibles, and the Specht modules give the complete list of
irreducible representations. When we turn from finite groups like the symmetric group to Lie
groups, the goal of classifying all representations is far more ambitious. Consequently, it makes
sense to restrict our attention to particulary “nice” representations. For GLn, one such class of
nice representations is the polynomial representations.

Definition 2.1. A representation ρ : GLn → GLN is said to be polynomial if the entries
of ρ(g) are polynomial functions in the entries of g. Specifically, if g = (gij)1≤i,j≤n and
ρ(g) = (ρ(g)kl)1≤k,l≤N , there must exist polynomials pkl ∈ C[x11, x12, . . . , xnn] such that

ρ(g)kl = pkl(g11, g12, . . . , gnn)

for all g ∈ GLn and 1 ≤ k, l ≤ N .

Importantly, this notion is independent of the choice of basis for V . Say ρ : GLn → GLN and
ρ′ : GLn → GLN define the same representation in different bases. Then there is a change of
basis matrix S such that ρ′(g) = Sρ(g)S−1. If S = (sij)1≤i,j≤N and S−1 = (sij)1≤i,j≤N , this
means the entries of ρ′(g) are given by

ρ′(g)kl =

N∑
a,b=1

skaρ(g)abs
bl,

1
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making it clear that if ρ is polynomial, then so is ρ′ (and symmetrically, if ρ′ is, then ρ is).
Therefore ρ′ is polynomial if and only if ρ is, and whether a representation is polynomial is
independent of the basis of V .

Example 2.2. The following give examples and a non-example of polynomial representations.

(i) The defining representation ρ : GLn → GLn, g 7→ g is trivially a polynomial representation
since ρ is the identity map.

(ii) The determinant det : GLn → C× = GL1 is a representation since det(g1g2) = det(g1) det(g2)
for all g1, g2 ∈ GLn. This is in fact a polynomial representation since det g is a polynomial
in the entries of g.

(iii) One may check that ρ : GL2 → GL3 defined by

ρ

(
g11 g12
g21 g22

)
=

 g211 g11g12 g212
2g11g21 g11g22 + g12g21 2g12g22
g221 g21g22 g222


is a representation. Once one knows it is a representation, it is indeed polynomial. As
we will see, this is the polynomial GL2-module associated to the partition λ = (2). After
developing the theory of these modules, we won’t have to do the tedious computation to
check this is a representation.

(iv) One may check that ρ : GLn → GL2 defined by

ρ(g) =

(
1 log(det g)
0 1

)
is a representation. This is not polynomial though since ρ(g)12 = log(det g) is not a
polynomial in the entries of g.

Every polynomial representation of GLn is semisimple ([5, §1]), so classifying all polynomial
representations of GLn amounts to classifying all irreducible polynomial representations. Our
goal throughout the rest of this report is to construct all such irreducible representations and
investigate their structure.

3. Motivating the definition of the Dλ modules

In this section, we will consider a natural action of GLn on a polynomial ring. Our exposition
is largely inspired by [6], which captures some of the key ideas of [2], translated into modern
mathematical language. This action will motivate the definition of the irreducible polynomial
modules we give in §5.

Consider the polynomial ring in n2 variables {zij}1≤i,j≤n, namely

V = C[z11, z12, . . . , znn] = C

z11 · · · z1n
...

. . .
...

zn1 · · · znn

 .
Our second notation suggests we can think of this ring as the vector space of polynomial functions
on the space of n×n matrices. Considering f ∈ V as a function in this way, define for A ∈ Mn(C)
and g ∈ GLn,

(g · f)(A) = f(Ag).

This turns V into a GLn-module since for g, h ∈ GLn and f ∈ V ,

((gh) · f)(A) = f(A(gh)) = f((Ag)h) = (h · f)(Ag) = (g · (h · f))(A),

and for f1, f2 ∈ V ,

(g ·(f1+f2))(A) = (f1+f2)(Ag) = f1(Ag)+f2(Ag) = (g ·f1)(A)+(g ·f2)(A) = (g ·f1+g ·f2)(A).
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Observe the definition of this action means, in particular, that for g = (gij)1≤i,j≤n ∈ GLn
and zab ∈ V ,

g · zab =

n∑
k=1

zakgkb.

Note that g · zab has degree one. Furthermore, the action is multiplicative, since

(g · (f1f2))(A) = (f1f2)(Ag) = f1(Ag)f2(Ag) = (g · f1)(A)(g · f2)(A) = ((g · f1)(g · f2))(A).

These two observations together imply that the action of g ∈ GLn does not change the degree
of the polynomial it acts on. This tells us that the polynomials of any fixed degree are a
GLn-invariant subspace of V . As such, V is far from being an irreducible module. As we want
to find the irreducible polynomial representations of GLn, this leads to the definition of the Dλ

modules, which are irreducible.

4. Combinatorial preliminaries

We recall some basic facts about Young tableaux to fix notation and conventions before
defining the Dλ modules. A partition of n is a weakly decreasing sequence of non-negative
integers that sum to n. The number of parts of a partition is the number of strictly positive
integers in the sequence (also known as the length). A partition can be identified with its Young
diagram, a left justified set of boxes with λi boxes in row i. For example, the partition λ = (5, 3, 1)
of 9 has the following Young diagram:

A filling T of shape λ is an assignment of positive integers to each box in the Young diagram
of λ. For us specifically, when considering a GLn-module Dλ, a filling T will always be considered
as having entries in [n] = {1, 2, . . . , n}. A semistandard tableau is a filling T such that the entries
are weakly increasing along each row (left to right) and strictly increasing down each column. A
standard tableau T is a semistandard tableau such that each number in [n] appears exactly once.
Below, we have a semistandard tableau on the left and a standard tableau on the right, both of
shape λ = (5, 3, 1):

1 2 5 5 5
4 4 7
6

1 2 6 7 9
3 4 5
8

The reader familiar with the representation theory of the symmetric group will recall that the
irreducible Sn-modules have basis elements corresponding to standard tableaux. As a vector
space, the Dλ modules are spanned by elements corresponding to fillings of shape λ. It turns
out, basis elements of this module correspond to semistandard tableaux.

5. Defining the Dλ modules

Let λ be a partition with at most n parts. We will define a GLn-module Dλ that will be seen
to be polynomial and irreducible. We are again inspired by [6]. In [3, §8.1], Fulton defines a
more general module, called the Schur module, as the solution to a universal problem. However,
the Schur module can also be embedded into a polynomial ring (see [3, §8.1, Lemma 3]). We
will essentially take the embedding to be our definition to avoid the technicalities of Fulton’s
definition and to maintain the classical spirit of Deryuts’s construction.
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For some indices i1, . . . , ip ∈ [n] such that p ≤ n, denote by Di1,...,ip the minor

Di1,...,ip = det(zk,il)1≤k,l≤p = det

z1,i1 · · · z1,ip
...

. . .
...

zp,i1 · · · zp,ip

 ∈ V.
Note that Di1,...,ip is alternating in the indices i1, . . . , ip (meaning Di1,...,ip = 0 if two indices
ik are the same, and Diσ(1),...,iσ(p) = sgn(σ)Di1,...,ip for all σ ∈ Sp), since the determinant is
alternating in the columns of a matrix. Then for a filling T of shape λ, we define the polynomial
eT ∈ V by

eT =

λ1∏
i=1

Dci ,

where the product is over the columns of T and ci is the entries of the ith column of T . Specifically,

Dci = DT (1,i),...,T (µi,i),

where µi is the number of boxes in the ith column and T (a, b) is the entry in the ath row of the
bth column of T . For example, if λ = (3, 2) and T is the filling

1 3 2
2 2

then

eT = D1,2D3,2D2 =

∣∣∣∣z11 z12
z21 z22

∣∣∣∣ · ∣∣∣∣z13 z12
z23 z22

∣∣∣∣ · z12 = (z11z22 − z12z21)(z13z22 − z12z23)z12.

Note that if p > n, Di1,...,ip is not defined. This is where the requirement that λ has at most
n parts is needed; otherwise for a filling T , there will be a Di1,...,ip term with p > n in the
expression for eT .

Definition 5.1. Let λ be a partition with at most n parts. The GLn-module Dλ is defined by

Dλ = SpanC{eT : T is a filling of the shape λ} ⊆ V.

The action is the same as the one discussed in §3, namely that for g ∈ GLn, f ∈ Dλ and
A ∈ Mn(C),

(g · f)(A) = f(Ag).

We know from the discussion in §3 that this satisfies the axioms of a module, provided the action
is closed on Dλ, which is not immediately clear. To see this, we need the following.

Lemma 5.2. For g = (gij)1≤i,j≤n ∈ GLn and indices i1, . . . , ip ∈ [n],

g ·Di1,...,ip =

n∑
k1,...,kp=1

gk1,i1 · · · gkp,ipDk1,...,kp .

Proof. Note that this result is the content of Exercise 3 in [3, §8.1]. As indicated by Fulton’s
hint, the result is a straightforward application of the multilinearity of the determinant in the
columns of a matrix. By definition of the action and using the explicit formula for the action on
monomials,

g·Di1,...,ip = det

g · z1,i1 · · · g · z1,ip
...

. . .
...

g · zp,i1 · · · g · zp,ip

 = det


∑n
k1=1 z1,k1gk1,i1 · · ·

∑n
kp=1 z1,kpgkp,ip

...
. . .

...∑n
k1=1 zp,k1gk1,i1 · · ·

∑n
kp=1 zp,kpgkp,ip

 .
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Writing the columns of the matrix as sums of column vectors, this is

det

∑n
k1=1 gk1,i1

z1,k1...
zp,k1

 · · ·
∑n
kp=1 gkp,ip

z1,kp...
zp,kp


 ,

or after using the multilinearity of the determinant in the columns of the matrix,

n∑
k1,...,kp=1

gk1,i1 · · · gkp,ip det

z1,k1 · · · z1,kp
...

. . .
...

zp,k1 · · · zp,kp

 =

n∑
k1,...,kp=1

gk1,i1 · · · gkp,ipDk1,...,kp .

�

We are now in a position to see that the action is closed.

Proposition 5.3. The action of GLn on Dλ is closed, and hence Dλ is a GLn-module.

Proof. Let T be a filling of λ with entries T (a, b). Using the definition of eT and Lemma 5.2,

g · eT = g ·

(
λ1∏
i=1

Dci

)
=

λ1∏
i=1

g ·DT (1,i),...,T (µi,i)

=

λ1∏
i=1

n∑
k1,i,...,kµi,i=1

gk1,i,T (1,i) · · · gkµi,i,T (µi,i)Dk1,i,...,kµi,i
.

This expands to a linear combination of terms of the form

λ1∏
i=1

Dk1,i,...,kµi,i
,

but this is exactly eT ′ if T ′ is a filling with entries given by T ′(a, b) = ka,b. So g · eT ∈ Dλ as it
is a linear combination of eT ′ terms. �

In Definition 5.1, we took the linear span of the eT polynomials where T is any filling of shape
λ. However, these polynomials are not all linearly independent. The following theorem tells us it
suffices to restrict to semistandard tableaux T to form a basis of our module.

Theorem 5.4. The module Dλ has a basis

{eT : T is a semistandard tableau of shape λ with entries in [n]}.

Proof. Regrettably, we do not have sufficient space in this report to prove this. The interested
reader can consult [3, §8.1, Theorem 1] and the following corollary for the proof. �

After identifying this basis, one sees as a corollary to the proof of Proposition 5.3 that the Dλ

modules are polynomial. When T is semistandard,

g · eT =

λ1∏
i=1

n∑
k1,i,...,kµi,i=1

gk1,i,T (1,i) · · · gkµi,i,T (µi,i)Dk1,i,...,kµi,i

is the action on a basis vector. When this product is written as a linear combination of basis
vectors, the coefficients will be polynomials in the gij entries. After collecting these polynomial
coefficients into a matrix representation, Dλ can be identified as a polynomial representation.
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Theorem 5.4 gives us a nice combinatorial interpretation of the dimension of the GLn-module
Dλ, namely, it is the number of semistandard Young tableaux of shape λ with entries from [n].
Barcelo and Ram [1, Part I, §3] provide the following interesting formula for this number:∏

x∈λ

n+ c(x)

hx
,

where c(x) is the content of the box x and hx is the hook length at the box x (see [1, Part I,
§2] to review the definition of these quantities). In the proceeding examples, the dimension will
be small enough that we will be able to write out all the semistandard tableaux by inspection.
However, this formula is useful for cases when such an enumeration is not straightforward.

6. Examples of the Dλ modules

Example 6.1. We give examples of the Dλ modules, seeing in particular how some well-known
representations arise as Dλ modules.

(i) Let λ = (1). The GLn-module D(1) has a basis with elements corresponding to the
semistandard tableaux of shape (1), namely {e l : 1 ≤ l ≤ n}. By Lemma 5.2, the action
of g = (gij)1≤i,j≤n ∈ GLn on e l is

g · e l = g ·Dl =

n∑
k=1

gk,lDk =

n∑
k=1

gk,le k .

This is the defining representation.
(ii) Let λ = (1n) and consider the GLn-module D(1n). There is a single semistandard Young

tableau T of shape (1n), namely

1
2

...

n

Then D(1n) is one-dimensional with basis eT . Using Lemma 5.2, the action of g =
(gij)1≤i,j≤n ∈ GLn on eT is

g · eT = g ·D1,2,...,n =

n∑
k1,...,kn=1

gk1,1 · · · gkn,nDk1,...,kn .

Since Dk1,...,kn is alternating in the indices, we have

g · eT =
∑
σ∈Sn

gσ(1),1 · · · gσ(n),n sgn(σ)D1,...,n = det(gt)D1,...,n = det(g)eT ,

where we have used the Leibniz formula for the determinant. Hence, D(1n) is the determinant
representation of GLn.

(iii) Let λ = (2). We will calculate the matrix representation of the GL2-module D(2) given
in Example 2.2 (iii). Corresponding to the three semistandard tableaux of shape (2) with
entries from {1, 2}, we have a basis for D(2) given by the polynomials

e 1 1 = D1D1 = z211, e 1 2 = D1D2 = z11z12, e 2 2 = D2D2 = z212.
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It is easiest to calculate the action of g = (gij)1≤i,j≤2 ∈ GL2 on the Di then use that the
action is multiplicative. Applying Lemma 5.2,

g ·D1 =

2∑
k1=1

gk1,1Dk1 = g11D1 + g21D2,

g ·D2 =

2∑
k1=1

gk1,2Dk1 = g12D1 + g22D2.

So then,

g · e 1 1 = (g ·D1)(g ·D1)

= g211D1D1 + 2g11g21D1D2 + g221D2D2

= g211e 1 1 + 2g11g21e 1 2 + g221e 2 2 ,

g · e 1 2 = (g ·D1)(g ·D2)

= g11g12D1D1 + (g11g22 + g12g21)D1D2 + g21g22D2D2

= g11g12e 1 1 + (g11g22 + g12g21)e 1 2 + g21g22e 2 2

g · e 2 2 = (g ·D2)(g ·D2),

= g212D1D1 + 2g12g22D1D2 + g222D2D2

= g212e 1 1 + 2g12g22e 1 2 + g222e 2 2 .

Therefore, the matrix representation ρ : GL2 → GL(D(2)), written with respect to the basis
{e 1 1 , e 1 2 , e 2 2 }, is

ρ(g) =

 g211 g11g12 g212
2g11g21 g11g22 + g12g21 2g12g22
g221 g21g22 g222

 .

7. Weight spaces and the irreducibility of the Dλ modules

The theory of weights plays an important role in the representation theory of Lie groups (see
[4, §14, §15]). In this section, we will introduce weights and weight vectors, and use some general
theory to see why the Dλ modules form a complete set of irreducible polynomial modules.

Let H ≤ GLn denote the subgroup of diagonal matrices. An element in H will be written
x = diag(x1, . . . , xn), where each xi 6= 0.

Definition 7.1. Let V be a representation of GLn. A vector v ∈ V is said to be a weight vector
with weight α = (α1, . . . , αn), where each αi ∈ Z, if

x · v = xαv

for all x ∈ H. The notation xα means xα1
1 · · ·xαnn .

Recall that a filling T of the shape λ is said to have weight or content α = (α1, . . . , αn) if 1
appears α1 times in T , 2 appears α2 times in T , and so on. The weight of T is denoted w(T ).
Naturally, the weight of a filling T corresponds to the weight of eT as a weight vector in Dλ.

Proposition 7.2 ([3, §8.2]). Let Dλ be a representation of GLn. For any filling T , eT is a
weight vector with weight w(T ).
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Proof. Let x = (xij)1≤i,j≤n ∈ H such that xij = 0 for i 6= j (we write x in this way, instead of
diag(x1, . . . , xn), to use Lemma 5.2). Applying Lemma 5.2,

x ·DT (1,i),...,T (µi,i) =

n∑
k1,...,kµi=1

xk1,T (1,i) · · ·xkµi ,T (µi,i)Dk1,...,kµi

= xT (1,i),T (1,i) · · ·xT (µi,i),T (µi,i)DT (1,i),...,T (µi,i).

If w(T ) = (α1, . . . , αn), then

x · eT =

λ1∏
i=1

x ·DT (1,i),...,T (µi,i)

=

λ1∏
i=1

xT (1,i),T (1,i) · · ·xT (µi,i),T (µi,i)DT (1,i),...,T (µi,i)

= xα1
11 · · ·xαnnneT

= xw(T )eT .

�

For a weight α = (α1, . . . , αn), there is the corresponding weight space,

Vα = {v ∈ V : x · v = xαv for all x ∈ H}.

Since the set of eT with T semistandard form a basis for Dλ, and in light of Proposition 7.2, Dλ

has a basis of weight vectors (see [3, §8.2]). This gives rise to the weight space decomposition,

Dλ =
⊕
α

Vα,

where α runs over weights of the form w(T ) with T semistandard of shape λ. Note that this
is a direct sum as a vector space, not as a module. The dimension of Vα is the number of
semistandard Young tableaux of shape λ and weight α. This quantity is called the Kostka
number Kλα.

Example 7.3. Let λ = (2, 1) and consider the GL3-module D(2,1). The following list gives the
semistandard tableaux that correspond to basis elements, along with their weights:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

(2, 1, 0) (2, 0, 1) (1, 2, 0) (1, 1, 1) (1, 1, 1) (1, 0, 2) (0, 2, 1) (0, 1, 2)

Since e 1 1
2

is a weight vector of weight w
(

1 1
2

)
= (2, 1, 0), we know for example that

diag(x1, x2, x3) · e 1 1
2

= x21x
1
2x

0
3e 1 1

2

.

Reading off the weights of all the semistandard tableaux above, we have the weight space
decomposition

D(2,1) = V(2,1,0) ⊕ V(2,0,1) ⊕ V(1,2,0) ⊕ V(1,1,1) ⊕ V(1,0,2) ⊕ V(0,2,1) ⊕ V(0,1,2).

Here, all the weight spaces are one-dimensional except V(1,1,1), which is two-dimensional since
there are two semistandard tableaux of weight (1, 1, 1).
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We now briefly explain why the Dλ modules form a complete set of irreducible polynomial
representations. Further details can be found in [3, §8.2], while the complete theory is developed
in [4, §14, §15]. Let B ≤ GLn denote the so-called Borel subgroup of upper triangular matrices.
A weight vector v ∈ V is said to be a highest weight vector if B · v = C×v. The theory of weights
tells us that a complex representation of GLn is irreducible if and only if the representation has
a unique (up to a scalar multiple) highest weight vector. It turns out that the module Dλ has
such a highest weight vector, namely eU , where U is the semistandard tableaux with i in every
box of the ith row. As such, the Dλ modules are irreducible. Furthermore, two representations
are isomorphic if and only if their highest weight vectors have the same weight. For a polynomial
representation, the possible highest weights α are those such that α1 ≥ α2 ≥ · · · ≥ αn ≥ 0,
meaning α is a partition with at most n parts. Observe that the highest weight vector of Dλ, eU ,
has weight w(U) = λ. So for any highest weight λ, Dλ is a module with a highest weight vector of
weight λ, and thus these modules form a complete set of irreducible polynomial representations.

8. Characters of the Dλ modules

Like in the representation theory of finite groups, characters play an important role in the
representation theory of Lie groups. In this section, we define and compute the characters of the
Dλ modules and see an interesting application.

If x = diag(x1, . . . , xn) ∈ GLn, and ρ : GLn → V is a representation, the character is

χV (x) = Tr(ρ(x)).

Note that this means the character is only defined on diagonal matrices.
To compute the character of the GLn-module Dλ, we can use the fact that the module

has a basis of weight vectors. Indeed, if eT ∈ Dλ such that T is semistandard, we have for
x = diag(x1, . . . , xn) that

x · eT = xw(T )eT .

So the action of x is diagonal as a matrix representation, and the trace is

Tr(ρ(g)) =
∑
T

xw(T ),

where the sum is over all semistandard Young tableaux of shape λ. These polynomials are
called Schur polynomials and are denoted by sλ(x1, . . . , xn). The Schur polynomials have
many interesting combinatorial properties in their own right; for example, they are symmetric
polynomials, meaning sλ(x1, . . . , xn) = sλ(xσ(1), . . . , xσ(n)) for all σ ∈ Sn. In fact, the Schur
polynomials form an additive basis for the ring of symmetric polynomials (for further details on
Schur polynomials, including proofs of these facts, see [3, §6]).

Two modules Dλ are isomorphic if and only if they have the same character. We have the
following theorem that offers a new perspective on the classification of the irreducible polynomial
GLn-modules using characters.

Theorem 8.1 ([5, Theorem 1.2]). Let λ be a partition with at most n parts. The Schur function
sλ(x1, . . . , xn) is an irreducible polynomial character of GLn, different λ yield different characters,
and every irreducible polynomial character has this form.
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Example 8.2. The character of the GL3-module D(2,1), by reading off the list of semistandard
Young tableaux and their weights given in Example 7.3, is

s(2,1)(x1, . . . , xn) =
∑
T

xw(T )

= x21x
1
2x

0
3 + x21x

0
2x

1
3 + x11x

2
2x

0
3 + x11x

1
2x

1
3

+ x11x
1
2x

1
3 + x11x

0
2x

2
3 + x01x

2
2x

1
3 + x01x

1
2x

2
3

= x21x2 + x21x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3.

Since the character of a direct sum of representations is the sum of characters (that is,
χV⊕W = χV +χW ), the problem of finding the multiplicities of irreducibles in any representation
is equivalent to expanding the character in terms of the Schur polynomials (see [5, §1]). This
leads to a rich interplay between combinatorics and represention theory; see the survey article
[1] for an overview of the subject of combinatorial representation theory.

Example 8.3. We give a simple but illustrative example of how characters can be used to
decompose an arbitrary representation of GLn into irreducibles. Let GLn act on the space of
n× n matrices V = Mn(C) by the formula

g ·A = gAgt.

Let ρ : GLn → GL(V ) denote the corresponding matrix representation. To calculate the character
of this representation, take x = diag(x1, . . . , xn) ∈ GLn and consider the action on a basis vector
Eij . We get,

x · Eij = xEijx
t = xEijx = xixjEij .

This means that the matrix representation ρ(x) is diagonal with entries xixj for i, j ∈ [n]. The
character is

χV (x1, . . . , xn) = Tr(ρ(x))

=

n∑
i,j=1

xixj

=
∑

1≤i≤j≤n

xixj +
∑

1≤j<i≤n

xixj

=
∑

T∈SSYT((2))

xw(T ) +
∑

T∈SSYT((1,1))

xw(T )

= s(2)(x1, . . . , xn) + s(1,1)(x1, . . . , xn).

Here SSYT(λ) is the set of semistandard Young tableaux of shape λ. This expression for the
character χV tells us that

V ∼= D(2) ⊕D(1,1).
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