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Abstract

We summarise section 1 and 2 of chapter 8 of SS. The goal of the chapter is to
prove Dirichlet’s theorem on primes in arithmetic progressions. Section 1 provides
motivation for the proof by presenting an earlier analytic-flavoured proof in number
theory, then section 2 sketches the proof of Dirichlet’s theorem.

The goal of chapter 8 of SS is to prove Dirichlet’s theorem:

Theorem 1 (Dirichlet’s theorem on primes in arithmetic progressions). Let [ and
q be coprime positive integers. Then the arithmetic progression

ILbl+q, l+2q 1l+3q,....,1+kgq, ...

contains infinitely many prime numbers.

This striking result refines the classical fact that there are infinitely many primes, by
informing us that if [ and ¢ are coprime positive integers, there are in particular infinitely
many primes congruent to [ modulo ¢. As a concrete example, for [ = 1 and g = 4, the
theorem says that there are infinitely many primes in the arithmetic progression

1,5,9, 13,17, 21, ...

The proof of the theorem utilises the theory of Fourier analysis on the finite abelian group
Z*(q), and indicates the power that Fourier analysis and analysis generally have to prove
results in number theory.

Number Theory and Analysis

Before discussing the proof of Dirichlet’s theorem, we need to understand an earlier result
which informed Dirichlet’s theorem, since it is not clear a priori how analysis would be
used to prove theorems in number theory.

Euler was one of first mathematicians who linked the worlds of number theory and anal-
ysis. He studied the zeta function, which is defined for a real number s > 1 by

1
((s) = v
n=1

(Note that ¢ has an analytic continuation to a meromorphic function on the complex
plane, but for now we have just defined ((s) for real s > 1.) The zeta function is an



object in the world of analysis, but Fuler’s product formula relates the zeta function to
the primes and the world of number theory:

Theorem 2 (Euler’s product formula). For real s > 1, we have that

where the product is over all prime numbers p.

The Euler product is an analytic expression of the fundamental theorem of arithmetic.
An interesting fact that SS prove as a consequence of the Euler product formula is the
following;:

Theorem 3. The series )
> p

where the sum is taken over all primes p, diverges.

Since the series would converge if there were only finitely many primes, this result gives
a new (analytic!) proof of the fact that there are infinitely many primes. This is Euler’s
proof of the infinitude of the primes.

Dirichlet’s Theorem

Dirichlet realised that he could use the idea of Euler’s proof to prove Theorem 1. In
particular, he realised that to show that the arithmetic progression

Ll+q l+2q,1+3q ..., +kgq, ...
contains infinitely many primes, it is sufficient to show that the series
s L
p=tmod ¢ ¥
diverges. Specifically, the proof of the theorem shows that

1
2

p=lmod ¢q
diverges as s — 1. The details of the proof are subtle, but we now introduce some key

ideas used.

Let ¢ and [ be coprime positive integers and let G be the finite abelian group Z*(q). For
the proof of Dirichlet’s theorem, we extend certain functions on G to functions on all of
7. For an example of this, consider the indicator function of [ € GG as a function on G,

1 ifn=1 mod g,
51(71) = .
0 otherwise.



To extend ¢; to a function on Z, we set §;(m) = 0 if m and ¢ are not relatively prime. In
a similar way, we can extend characters of G to functions on Z. If e € G, we define

e(m) if m and ¢ are relatively prime,
x(m) = .
0 otherwise.

The function x is called a Dirichlet character modulo q. The notation yq is used for the
extension of the trivial character, i.e., xo(m) = 1 if m and ¢ are relatively prime and
Xo(m) = 0 otherwise. Fourier analysis on G can be used to prove the following result:

Lemma 4. The Dirichlet characters are multiplicative. Moreover,
im) = —— 3" X(Dx(m)
i\m) = ——= x\)x\m),
vla)

where the sum is over all Dirichlet characters.

Here (q) is Euler’s totient function, which counts the number of positive integers less
than or equal to ¢ which are coprime to ¢, which is also the order of the group G. Note
that ¢; is the indicator function of the arithmetic series [, [ + ¢, [ 4+ 2¢q, ... Then Lemma
4 allows us to rewrite the series we are interested in in the following way:

3 i:ZCSl(p) :ﬁzzmx(?j). (1)

P’ I p

p=lmod ¢q P
Through some careful analytic manipulation of the right hand side of equation 1, we can
show the left hand series diverges as s — 17.

When making the necessary analytic manipulations, we are led to consider so-called
Dirichlet L-functions. These are defined for real s > 1 by

— x(n)

L(s,x) =

n=1
where x is a Dirichlet character. For example, let e be the character of Z*(4) defined
by e(1) = 1 and e(3) = —1. Then the corresponding Dirichlet character y is given by
x(n)=1ifn=1 mod 4, x(n) = —1if n =3 mod 4 and x(n) = 0 if n is even. Thus,

= x(n) 1 1 1 1 1
L = =]1-—4+=———=—+——
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n=1

Dirichlet proved L-functions can be expressed as products analogous to the Euler product.

Theorem 5. If s > 1, then

where the product is over all primes p.

This expression for L(s, x) plays an important role in showing that the series in equation
1 diverges as s — 17.
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