Modular forms talk 1 Det-a group T < C is a lattice it there exists a Z-basis of M that is an IR-basis We're interested in R, the set of all lattices. $\mathcal{M} := \left\{ \left(\omega_{l}, \omega_{l} \right) \in \mathcal{L}^{\times} \times \mathcal{C}^{\times} : \operatorname{Im} \left(\frac{\omega_{l}}{\omega_{l}} \right) > 0 \right\}$ (Note: $\omega_1 = \left(\frac{\omega_1}{\omega_2}\right) \cdot \omega_2$. $\mathbb{I}_{w}\left(\frac{\omega_1}{\omega_2}\right) > 0$ $\longrightarrow \mathcal{W}_{\mathcal{L}}$ We have a wap $M \rightarrow R$, $(\omega, \omega_1) \leftarrow Z\omega, \oplus Z\omega_2 = : \Gamma(\omega, \omega_1)$ that is surj. CX R (CX RM) by $\lambda \cdot \Gamma = \lambda \Gamma \quad (\lambda \cdot (\omega_1, \omega_2) = (\lambda \omega_1, \lambda \omega_2))$

Example > We can remove redundancy by normalising: $\Gamma(w, w_r) \longrightarrow \frac{1}{w_r} \cdot \Gamma(w_r, w_r) = \Gamma(\frac{w_r}{w_r}, 1)$ thus, M/C× ~> H:= {zeC: Im(z) >0}, $T^{r}(\omega_{r}, \omega_{r}) \mapsto T^{r}(\frac{\omega_{r}}{\omega_{r}}, \underline{\tau}) \longleftrightarrow \frac{\omega_{r}}{\omega_{r}} \in \mathcal{H}.$ If (ab) = SL2(Z), $\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} aw_1 + bw_2 \\ cw_1 + dw_2 \end{pmatrix}$ is also a Z-basis of M(W1, W2).

If
$$Z:=\frac{W_1}{W_2}$$
 and $Z':=\frac{W_1'}{W_2'}$, then

$$Z'=\frac{aW_1+bW_2}{cW_1+bW_2}=\frac{aW_1'+b}{c\frac{W_1'}{W_1}+d}=\frac{az+b}{cz+d}=\frac{az+b}{oz+d}=\frac{oz+d$$

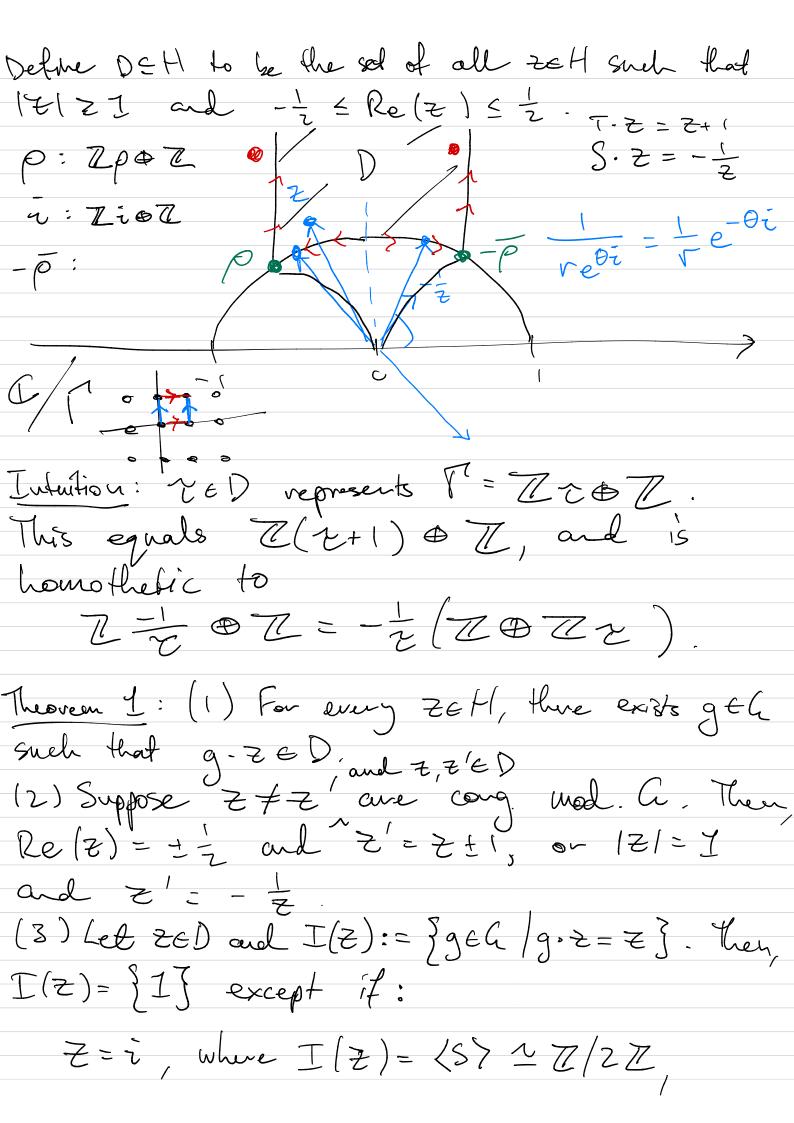
Prop: For two elements of M to define the same lattice it is necessary and sufficient that they are cong. wad. $SL_2(Z)$.

the wap $M/C^{\times} \longrightarrow H, (W_1, W_2) \mapsto \overline{W_1}$ transforms the action of $SL_2(Z)$ on

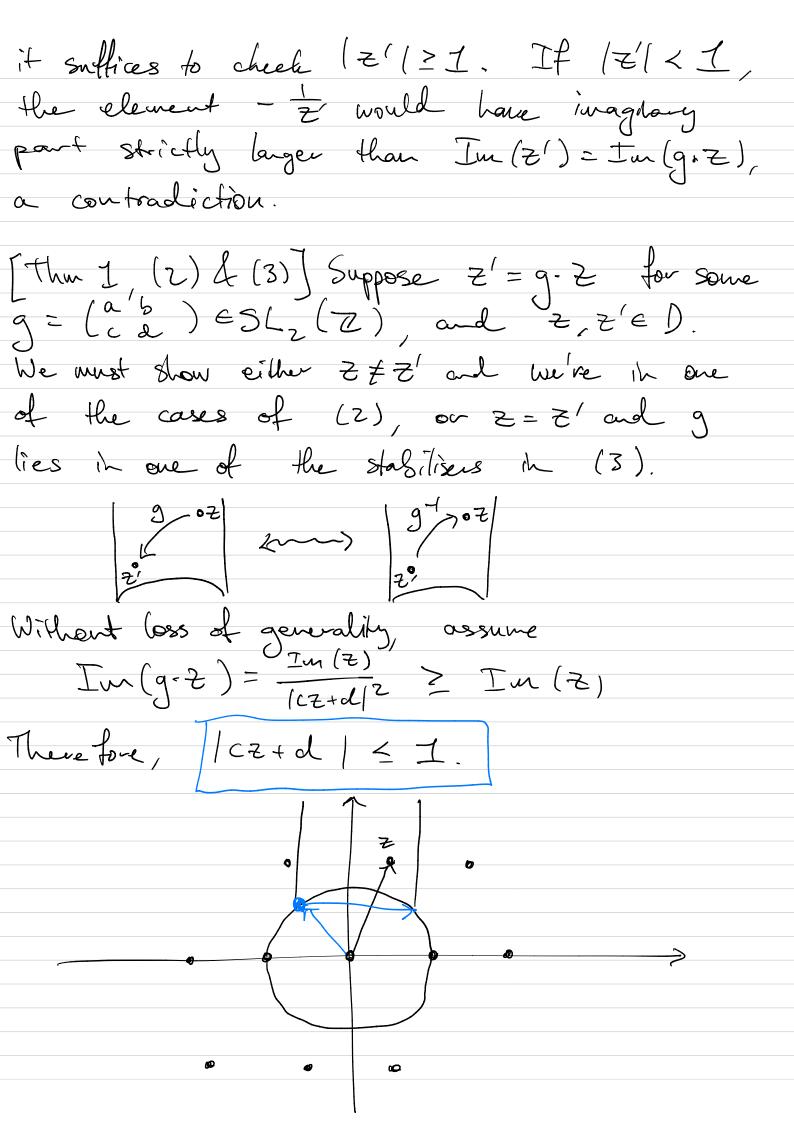
M into
$$g \cdot Z = \frac{az+b}{cz+d}$$
, $g = (ab) \in \mathbb{Z}_z(\mathbb{Z})$ in H .

St the wodular group

Since
$$(-1, 0, -1) \cdot 2 = \frac{-1 \cdot 2 + 0}{0 + -1} = 2$$
 (-Id aels


trivially), we consider the modular group

 $a := PSL_2(Z) = SL_2(Z) / \{\pm 1\}$


to be acting on H . $(1, -1) = (-1, 1)$.

1.2 Fundamental domain

Denote $S:=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$, $T:=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ and note $S\cdot Z=\frac{-1}{Z}$, $T\cdot Z=Z+1$ S^2-1 , $(ST)^3=1$.

Z=P= 21/3, Where I(Z)= 2ST) 17/37 Z=-p=etti/3, where I(z)=2+5>=Z/3Z Coro: The canonical wap D -> H/a is surj. and its restriction to the interior of D is inj. Theorem 2: a is generated by S and T. Proof: [Thur 1 (1)] Devote a := \S,T > \(\alpha\).
Let Z \(\in H\). Want g' \(\alpha\) such that g'. \(2\in D\). If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, recall $Im(g \cdot \overline{t}) = \overline{Im(\overline{t})}$ $Ic\overline{t} + d\overline{t}$ The number of pairs (c, d) such that (czed) is less than a given number is filite there exists $g \in G'$ such that Im(g.z) is maximised. We can translate g.z (eft on right to get Tg.Z to home real part between -z ad z. We claim z'= Tg.ZeD

Cases:

$$C = 0$$
 $C = 0$
 C

that $g' \cdot Z \in D$. Thun, Z_0 and $g' \cdot Z = g'g \cdot Z_0$ are cong. mod. a and both lie in D. Since Z_0 is A the interior, (Z) and (S) imply they coincide and that g'g = I. Hence, $g = (g')^{-1} \in C = (S,T)$.

Stefano's comments (details need checking) $y^2 = x^3 + ax + b$ $\operatorname{op}(z) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma \setminus \{0\}} \left(\frac{1}{(u-\gamma)^2} - \frac{1}{\gamma^2} \right).$ (1) If op(z+w) = op(z) for all WET, op defines a function on C/ $z \mapsto (\varphi(z), \varphi'(z)) = (x,y)$ $y^2 = 4x^3 - g_2x - g_3$

Det: Let le EZ. We say f is wealely modular of weight zhe (or - zh, or h) if f is mero. (ab) e SLz (Z). Note: (2) is equivalent to (4) f(z+1) = f(z), and (5) f(-1/2) = 22h f(2), since G = < S, T >. There is a change of variables

| There is a change of variables
| Z=x4yi, ZIIi==:q $B_{i}(0) \setminus \{0\}$ $q = e^{2\pi i t}$ $= e^{2\pi i t}$ $= e^{2\pi i t}$ The fact that f(z+i) = f(z) wears that f can be curiffen as a for of q, which we hereke $\overline{f}(q)$. \overline{f} is wers. on the punctured. We say I is mero (holo.) at ∞ if \hat{f} extends to a mero. (holo.) I' at O, i.e., if on a

Modular forms talk 2

where $a_n = 0$ for all n suff. Small (n < 0). Def: A wealery modular function is called modular f it is wero. at ∞ . If f is holo. at ∞ , $f(\infty) := \hat{f}(0)$. Def: A modular form is a modular for which holo. ever-yerhere, incl. so. If $f(\infty) = 0$, f is called a cusp form. Therefore, a modular form of weight the is a series $f(z) = \sum_{n=0}^{\infty} a_n q^n = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ converging for 19/21 (i.e., Im(z) 20) Verifying f(-1/2) = Z2k f(Z). It is a cusp form it as = 0. Example: 2 TT (1-2") 24 is a cusp form of weight (2.

2.2 Lattice fus & modular fus $\mathcal{P}_{S} := \left\{ \left| \text{affices in } \mathcal{C} \right| , \quad \mathcal{M} := \left\{ \left(\mathcal{W}_{i}, \mathcal{W}_{i} \right) \in \mathcal{C}^{\times} : \operatorname{Im} \left(\frac{\mathcal{W}_{i}}{\mathcal{W}_{i}} \right) > 0 \right\} \right\}$ If Fon B and le EZ, we say F is of weight 2le (7) $F(\chi \Gamma) = \chi^{-2k} F(\Gamma)$ for all $\Gamma \in \mathcal{R}$ and $\chi \in C^{\times}$. Write $F(w_{i}, w_{z})$ for the value of F on $\Gamma(w_{i}, w_{z})$. (7) becomes (8) $F(\lambda \omega_1, \lambda \omega_2) = \lambda^{-2\ell_0} F(\omega_1, \omega_2)$. F is invariant under the action of $SL_2(\mathbb{Z})$ on M. Substrage & = w2, (9) ω_z $F(\omega_r, \omega_z) = F(\frac{\omega_r}{\omega_z}, 1) = : f(\frac{\omega_r}{\omega_z})$ Writing Z= w, we have f(z) = F(z, 1) = F(az+b, cz+d)(2) = ((2+d)2h F(az+b)(1) = (cz+d)-2h f(az+b) Then, (2) (>) (9), and modular fus of weight The to lattice f's of neight the.

2.3 Examples of modular f ^u s; Eisenskin series
Let le > 1, and TER. Define the Eisenstein seines
of index le Car We) by
(10) GG (T):= \(\frac{5}{\gamma^{\gamma_{\gam
OV .
(11) $G_{\ell}(\omega_1, \omega_2) := \sum_{(m,n) \neq (0,0)} \frac{1}{(m\omega_1 + n\omega_2)^{2\ell}}$
(12) Qu (Z):= = = (mn) ≠(00) (mz+n)24.
(10) is clearly of weight Zk. Our preu discussion
(10) is clearly of weight Zk. Dur prev discussion implies (12) is wealely modular of weight Zk.
Lemma 1: Let $\Gamma \in \mathcal{R}$. The series

χεΓ\(\(\delta\)) γ ο
is convergent for $\sigma > 2$.
Proof: Set
d:= min (171: 8 = 1/202), v == 2.
Then the balls
$B_{r}(\gamma)$, $\gamma \in \Gamma \setminus \{0\}$
are non-overlapping.
ii U

121=18+2-81 < 181 + v < 181+ 181 < 2 | 81 $\frac{1}{181} < \frac{2}{121} = \frac{1}{1810} < \frac{20}{1210}$ Integrating over $B_r(\gamma)$, $\frac{\pi r^2}{|\gamma|^{\alpha}} \leq 2^{\alpha} \int_{|z|^{\alpha}} dA$ Summing over y 70, TIV2 2 1810 < 20) 1210 dA < 2 5 / 1210 dA We just need to check the RH integral is 12/2 r dA = 5 5 - u du da $= 2\pi \left[\frac{u^{-\sigma+2}}{-\sigma+2} \right] \qquad \text{Converges iff}$ $= -\sigma+2 \qquad \qquad \sigma-1 > 1$ = -2 , 5 - 2 .

Prop 4: Let le>1. Gk(2) is a modular form of
weight 24. We have Gu(00) = 2 g(26). (!!!)
Proof: First consider ZED:
$ mz+n ^2 = m^2 z ^2 + 2mnRe(z) + n^2$ $p = e^{2\pi i/3}$
21 2-2
$\geq m^2 - mn + n^2 = mp + n ^2$
,
Then, \[\lambda \frac{1}{(m,n) \neq (0,0)} \lambd
Therefore, are converges absolutely & uniformly on
D, so Ge is holo. on D. If z'egD, z'=g. Z
for some ZeD and the formula
Gu(Z') = Gu(g.Z) = (cz+d)26 Gu(Z)
= (cg-1.2+d)26 (4 (g-1.2)
shows an is holo. on gD. Then are is holo.
on H since the translations of cover H.
To see Gu is holo. of oo, we need to show
the limit as In(Z) -> or of Gu(Z) exists. The
uniform convergence in Dimplies we can take the
limit term by term:
lin (12) = [in
lim Im(z) > 00 (LZ) = 2 Im(z) - 00 (mz+n)zh + 2 Im(zh-)zh m=0 NEZ (20)
= o

Relation w/ elliptic curves: If I is a lattice, the

Weierstrass $80-4^n$ is $8p(u) := \frac{1}{u^2} + \sum_{r \in r \setminus \{0\}} \left(\frac{1}{(u-r)^2} - \frac{1}{r^2} \right)$

If $x = 8p_{r}(u)$ and $y = 8p_{r}'(u)$, there holds

 $y^2 = 4x^3 - 92x - 93$, where 92 = 6062, 93 = 14063.

therefore, of is isom. to a cubic curve.

The Eisenstein series appear in the Laurent expansion of 80 m/(u).

 $\mathcal{S}_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1) C_k(\Gamma) u^{2k-2}$

Moreover, 3 - 2793

is a modular form of weight 12. One can compute $\Delta(\infty) = 0$ (requires 5 values), so it is a cusp form. I is the discriminant of 4x3-gz>c-gs up to a numerical factor.