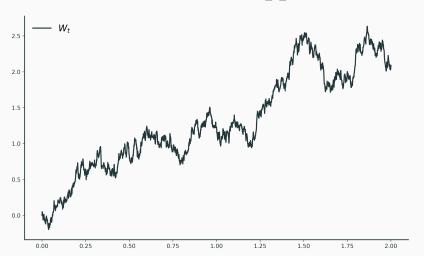
Maximum and Hitting Times for the Wiener Process

Declan Fletcher May 2025

The running maximum

Let $(W_t)_{t\geq 0}$ be a Wiener process.

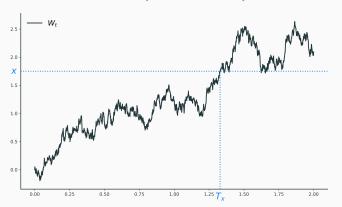
The running maximum $(M_t)_{t\geq 0}$ is $M_t := \max_{0 \leq s \leq t} W_s$.



The hitting time of (x, ∞)

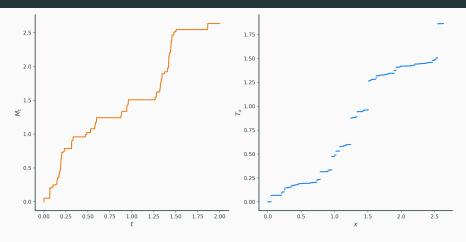
For $x \ge 0$, the hitting time T_x is the time when W_t becomes larger than x. That is,

$$T_x := \inf\{t > 0 : W_t > x\}.$$



We consider $(T_x)_{x>0}$ as a stochastic process.

The relationship between (M_t) and (T_x)



- (1) M_t and T_x are inverse functions in the sense of Exercise 1.24.
- (2) There holds $\{M_t > x\} = \{T_x < t\}.$

Pdfs of M_t and T_x

We have

$$\mathbb{P}(M_t > x) = \mathbb{P}(T_x < t)$$

$$= \mathbb{P}(T_x < t, W_t > x) + \mathbb{P}(T_x < t, W_t < x)$$

$$= 2\mathbb{P}(T_x < t, W_t > x)$$

$$= 2\mathbb{P}(W_t > x)$$

$$= 2\left(1 - \Phi(x/\sqrt{t})\right).$$

This yields the following pdfs:

$$f_{M_t}(x) = \frac{2}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right), \quad f_{T_x}(t) = \frac{x}{\sqrt{2\pi t^3}} \exp\left(-\frac{x^2}{2t}\right).$$

The distribution of M_t

Fix
$$t \ge 0$$
. M_t has pdf $f_{M_t}(x) = \frac{2}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right)$, $x \ge 0$.

This is N(0, t) truncated to $[0, \infty)$.

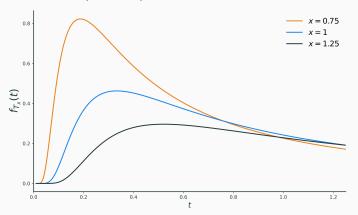
So, M_t has the same distribution as $|W_t|$.

The distribution of T_x

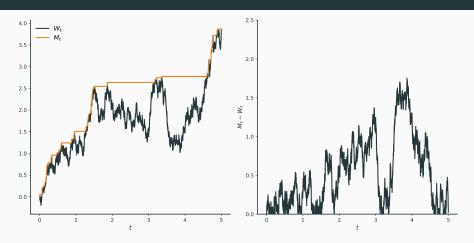
Fix
$$x \ge 0$$
. T_x has pdf $f_{T_x}(t) = \frac{x}{\sqrt{2\pi t^3}} \exp\left(-\frac{x^2}{2t}\right)$, $t \ge 0$.

 T_x has the same distribution as $\frac{x^2}{Z^2}$ if $Z \sim N(0,1)$.

It can be shown $\mathbb{P}(T_x < \infty) = 1$, but $\mathbb{E}T_x = \infty$.



The difference $M_t - W_t$



Theorem: The difference $(M_t - W_t)_{t \ge 0}$ has the same distribution as a reflected Wiener process $(|\tilde{W}_t|)_{t \ge 0}$.

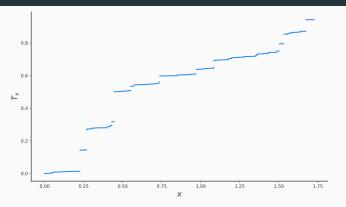
Local time at zero

Consider a clock which runs when $(\tilde{W}_t)_{t\geq 0}$ is zero. This is called the local time at zero.

zeros of
$$ilde{W}_t \leftrightarrow$$
 zeros of $| ilde{W}_t|$
 \sim zeros of $M_t - W_t$
 \leftrightarrow times when $W_t = M_t$
 \leftrightarrow times when M_t increases

 M_t shows the time \tilde{W}_t has spent at zero!

T_x as a Lévy process



Theorem: $(T_x)_{x\geq 0}$ is a strictly increasing pure-jump Lévy process with transition density

$$p_{x}(t \mid s) = \frac{x}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{x^{2}}{2(t-s)}\right), \quad 0 < s < t, x > 0.$$

Sketch of the proof

Theorem: $(T_x)_{x\geq 0}$ is a strictly increasing pure-jump Lévy process with transition density

$$p_x(t \mid s) = \frac{x}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{x^2}{2(t-s)}\right), \quad 0 < s < t, x > 0.$$

Sketch: For x, y > 0, $(W_t)_{t \ge 0}$ must enter (x, ∞) before $(x + y, \infty)$, meaning $T_x < T_{x+y}$.

Consider the increment $T_{x+y}-T_x$. This equals \tilde{T}_y , the hitting time of (y,∞) for $(\tilde{W}_u:=W_{T_x+u}-W_{T_x})_{u\geq 0}$. The strong Markov property implies \tilde{T}_y is independent of T_x .

Pure-jump processes and Poisson random measures

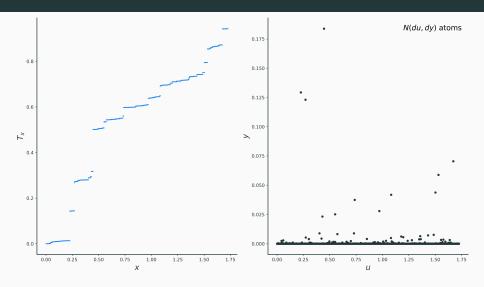
We can write

$$T_{x} = \int_{[0,x]\times\mathbb{R}_{+}} N(du,dy) y.$$

Here N is a Poisson random measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with mean measure $\mathrm{Leb} \otimes \nu$ satisfying

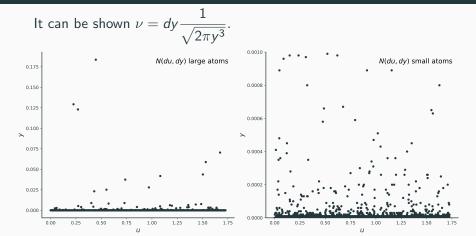
$$\int_{\mathbb{R}_+}\nu(dy)(y\wedge 1)<\infty.$$

The atoms of N



What is the Lévy measure ν ?

The Lévy measure



The expected number of atoms in $[0,1] \times (a,b)$ is

$$(\operatorname{Leb} \otimes \nu)([0,1] \times (a,b)) = \sqrt{\frac{2}{\pi a}} - \sqrt{\frac{2}{\pi b}}.$$